by Max Hope, John McCloskey, Dom Hunt and Dominic Crowley
Large earthquakes (and secondary hazards such as aftershocks, tsunamis and earthquake-triggered landslides) continue to cause some of the most devastating humanitarian disasters, yet they remain poorly understood by humanitarian organisations. This is partly because of the unique features of major earthquakes compared to other disasters (International Federation of Red Cross and Red Crescent Societies , 2012). They are unpredictable, low-frequency, high-impact events with little or no warning and very rapid onset. Some level of preparedness and disaster risk reduction is possible in at-risk areas (risk mapping and targeted mitigation, awareness-building, modification of building codes and logistical response capacities, for example) (Concern Worldwide, 2015 ), but decision-making in the response phase immediately after a major earthquake has often been reactive and ad hoc, rather than evidence-based and strategic.
While the timing of earthquakes cannot be predicted, they are not random. Areas prone to earthquakes are well known, and the science of determining stress build-up along fault lines is well-understood. Scientific approaches are also being developed that can forecast the intensity and spatial distribution of aftershocks. This paper reports on a collaboration between scientists from the University of Edinburgh School of Geosciences and Concern Worldwide to integrate this work into humanitarian planning, preparedness and response decision-making processes. We are also developing a training and support programme for humanitarian workers on how to interpret the forecasts and use them in emergency situations. This paper outlines the main features of the approach and describes the lessons from Concern’s use of a prototype during its emergency response to the earthquake in Nepal in April 2015.
Read more on Humanitarian Practice Network